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VERTICAL VIBRATION OF A RIGID CIRCULAR BODY AND
HARMONIC ROCKING OF A RIGID RECTANGULAR BODY
ON AN ELASTIC STRATUM

A. O. Awosonrt

Department of Mechanical Engineering, University of Lagos, Nigeria

Abstract—The mixed boundary-value problems of the vertical vibration of a rigid circular body and the rocking
of a long rigid rectangular body on an infinitely wide elastic stratum have been precisely formulated in terms of
dual integral equations. Approximate solutions of these equations for the case of a frictionless foundation base
have been obtained by establishing in a novel manner an equivalent system on a semi-infinite elastic medium.
It is shown that the response of a body vibrating at frequency factor 1, on a stratum of finite depth is approximately
equivalent to that of the body with its inertia increased by a factor n%/n3. but vibrating at a lower frequency
factorn,, = (n2—1/h*)?* on a semi-infinite medium of the same elastic constants as the stratum of non-dimensional
depth h. All the results approach corresponding semi-infinite medium results as the stratum depth tends to
infinity. This, therefore, corrects the error of Warburton [1] in which the response of a body on a semi-infinite
medium lies between responses on strata of finite depths contrary to the expected asymptotic approach confirmed
by the experiments of Arnold et al. [2].

Finally, two important results are established for this system: a stratum depth of about five times the base
radius (or semi-width, for the rectangular body) is a very fair approximation to a semi-infinite medium  resonant
frequency of a body on a stratum decreases with increasing stratum depth. Furthermore, the resonant frequency
factor, #,, of bodies with large inertia ratios (greater than about 10} can be estimated from the semi-infinite
medium solution irrespective of the stratum depth. The present theory consistently shows good agreement
with the experimental results of Arnold et al. {2].

1. INTRODUCTION

THE present work is an attempt to answer two fundamental questions: what depth of a
stratum is a fair approximation to a semi-infinite medium when a rigid circular body
performs vertical vibrations or a rigid rectangular body rocks on an infinitely wide stratum
on a frictionless foundation? Secondly, how does the resonant frequency factor of the body
vary with increasing stratum depth?

The practical need to study vibrations of rigid bodies on a stratum rather than the
conventional half-space and the review of the slim literature in this field have been more
fully discussed by the author in an earlier work [3] which deals with the simplest of the
modes of vibration: torsional oscillations of a rigid circular body on an infinitely wide
elastic stratum. This work gives, for that simple mode of vibration, the answer to our
first question as a stratum depth of about five times the radius. The result is confirmed by
Gladwell [4] in a publication later in that year where he considers the same simple case
of torsional oscillations and obtains approximate solutions for low frequency factor and
high stratum depth ratios using a method devised by Noble for solving Fredholm integral
equations of the second kind to which the problem is reduced.
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However, large structures on elastic foundations—like buildings with rotating machin-
ery installed in them—are more frequently excited in translational modes and the need
to study both vertical and rocking vibrations, {especially for tall structures) therefore,
demands much greater attention.

Unfortunately, Warburton’s theory [1] as hinted by the author in the introduction of
that earlier work [3] is contrary to practical experience because Figs. 5 and 7 of his paper
[1] which considers the problem of the present work shows that the response of a rigid
body on an infinitely deep medium lies between responses on strata of finite depths. One
can only attribute this error to the fundamental assumption of his theory—using a static
stress distribution of the elastic half-space as a starting point for solving a dynamic prob-
lem of a stratum.

It is also worth mentioning that Paul in a series of works, for example, [5-7] formulates
some analogous problems. The results, however, are far from shedding any light on the
answer to the above significant questions.

It is important to emphasize the practical significance of the present investigation.
The linear dimensions of the base of large structures, in general, would compare with the
depth of the sub-soil for which a reasonably uniform composition can be found. Usually,
the modulus of elasticity of the sub-soil increases with depth and it is a far more practical
model, for such large structures, to consider a stratum of some depth as affecting the
response of the structure to external excitation than the whole depth of the otherwise
semi-infinite medium. Thus, in order to have a more accurate result on the resonant
frequency of the structure or, conversely, to use the resonant frequency to determine the
elastic constants of the medium as in other previous works {8, 9], it is necessary to develop
a theory for vibrations on a stratum rather than on an elastic half-space.

We emphasize here a legitimate approach to understanding these problems is to seek
first an exact formulation in terms of dual integral equations. Approximate solutions to
these equations will give better results than guessing from the start the form of the unknown
stress distribution under the rigid body because this is the major factor governing the
required response of the body.

The governing dual integral equations are here developed for the first time starting
from the governing differential equations of a vibrating elastic medium. We observe later
that an interesting and useful reduction of the stratum system to an equivalent semi-
infinite medium has been possible by considering an approximation to the governing
dual integral equations. This has the main advantage that the behaviour of the stratum
problems can be predicted from the elastic half-space models which are now pretty well
understood. The present work gives complete results for the semi-infinite medium case
of the circular body whilst those for the rocking of a rectangular body have been given
in an earlier work [10]. The results lead to answers to the above two questions for the
first time on a justifiable theoretical basis and they agree within stated limits of approxima-
tion with the experimental results of Arnold et al. [2] which, however, are limited only
to the case of zero Poisson’s ratio.

2. GOVERNING DIFFERENTIAL EQUATIONS AND
THEIR GENERAL SOLUTIONS
In the analyses which follow, repetition of previous work is minimized by quoting
equations already established by the author in previous works [3, 11]. Also, because of
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the similarity in the results, only equations for the rigid circular body will be derived whilst
corresponding terminal results for the rectangular body will be quoted by attaching letter
a to the corresponding equation’s number.
It has been shown in [11] that the governing equation for an isotropic elastic medium
in the absence of thermal damping,
2
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are the zero order and first order Hankel transforms of the dilatation &(r, z) and component
of rotation wy(r, z), respectively. The double-valued functions a, , a, are defined as

% = \/(PZ_Qf)
and
%, = J(p*—Q))

where Q, = Q/c,, Q, = Q/c, in which Q is the angular frequency of sinusoidal vibrations,
¢, and c, are the velocities of dilatational and shear waves, respectively.

The general solutions of equations (2) and (3) now take us from the realm of the earlier
work. They are given by

& = A, sh(a,z)+ A4, ch(a,z) “4)
@, = B, sh{x,z)+ B, ch(x,z). (5)

We notice the obvious difference between these solutions and the corresponding solutions
of the semi-infinite medium where we can set the positive exponential arbitrary functions
to zero on the argument that the solution remains finite as the depth coordinate tends to
infinity. In the present case, the finiteness of the stratum depth demands the introduction
of the two arbitrary functions in each solution. It should also be understood that all stresses
and displacements vary sinusoidally with respect to time at an angular frequency Q.

For the rigid rectangular body, Cartesian coordinates x along the width of the base,
y directed to the interior of the medium and z along the infinitely long length coinciding
with the axis of rock will be used. The application of complex Fourier transforms leads to
precisely the same equations as in (4) and (5) if z is replaced by y and &, by @, .
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3. EVALUATION OF THE ARBITRARY FUNCTIONS IN TERMS OF
BOUNDARY STRESS AND DISPLACEMENT TRANSFORMS

It has been shown in [11] that the relevant transforms of stresses and displacements
in the elastic medium are given by

s, =§{4 dj’"+ﬁ2[ ﬁlal]s} ©)
T, = { 2 [P +‘x2]we} N
_ 1 _ ,dé

W:aﬁb%—&i} ®)

where G is the shear modulus and 4 the Lame’s constant of the medium; § = ¢,/c, is the
ratio of the wave velocities ; w is the component of displacement in the depth direction.
The mixed boundary conditions at the surface are given by

wir,0)=w, 0<r< R)}

9
a{rr0}=0 (>R

We now assume zero shear stress on the whole surface and at the stratum base—the latter
corresponding to a frictionless contact with the foundation. In addition the vertical com-
ponent of displacement vanishes at the base so that the remaining boundary conditions
can be expressed as

L n0) =0 (r>0) (10)
wir,hh=0 (>0 1y
7, =0 (r>0 {12)

where h is the constant depth of the stratum and R is the radius of the circular base.

It is here observed that a great simplication is achieved by noting from equations
{7} and (8) that the boundary conditions in (11) and (12) are readily satisfied by setting
each of dé/dz and @, to zero. Also we replace the mixed boundary conditions (9) by the
introduction of a discontinuous stress function valid throughout the surface and incor-
porating both the unknown stress distribution under the body and the known zero direct
stress outside the rigid circular base. The transforms of our boundary conditions, from
the foregoing, then take the following alternative form:

5(p.0) = o(r) (r>0) (13)
7.0 =0 (>0 (14)
@yp, h) =0 (r>0 (15)
de/dz{p,h) = 0 r>0) (16}

where a(r) is the transform of the discontinuous function of the direct stress on the surface
of the stratum.

H we now use the solutions in equations (4} and (5) in equations {6)—(8) and set the
depth coordinate to zero or h appropriately, we ultimately find that the arbitrary functions
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are to be determined from the set of simultaneous equations:

A Q:—

BZ(—G‘PZ—ﬂZ“f) A, +4po,B, = *GEU(") (17)
B*pa, A, —(p*+93)B, =0 (13)
sh(a,h)B, +ch(a,h)B, = 0 (19)
ch(x, k)4, +sh(a, )4, = 0. (20)

We shall show in the next section that we require only B, to formulate our governing
dual integral equations. The evaluation of B, from the above equations requires the
following preliminary results

A 2
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We then find after some algebra in the determinantal solution of the simultaneous
equations that

21)0‘ 0'( )
= 24
2 G¢(p, ( )
where
d(p, h) = (2p* — Q2)? coth(a, h)—4p*a, &, coth(a,h) (25)

is a modified Rayleigh function appropriate to the stratum problem and clearly reduces
to the well known Rayleigh function of the semi-infinite medium as 4 tends to infinity.
It is sufficient to state that the boundary conditions and procedure for evaluation
are similar for the rectangular body and, corresponding to equation (24), we have
iQ2pa, o(x)
B, = — 217 (24a)
’ Go(p, h)
where 5(7) is the complex Fourier transform of the unknown dynamic stress distribution
under the rocking base of semi-width b and ¢(p, h} is exactly the same as in equation (25).

4. FORMULATION OF THE EXACT GOVERNING DUAL INTEGRAL
EQUATIONS

We now focus attention on the exact boundary conditions at the surface of the stratum
as expressed by equations (9). We find from the first of these equations that we require
the transforms of the components of displacement at the surface. Using the solutions of &
and @, of equations (4) and (5) in the general solution of W in equation (8) and then setting
z to zero, we find that

1
W), =0 = ﬁg(zPBz_ﬂzAﬁh)- (26i)
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We eliminate 4, from this equation using equation (18) so that, after a little algebra,
we obtain the simple result
_ B
(W), = = (26)
p
which gives us the reason for finding only B, in the last section.

If now we use Hankel’s inversion theorem on the exact boundary conditions in equa-
tions (9) and substitute for B, of equation (26) using the results of equation (24), we ulti-
mately find that the exact governing dual integral equations for the rigid circular body are

QGre a —

G . @(pj h)a(r)p.}o{pr) dp=w, (0<r<R)

j Oploeridp =0 (r> R)

O

(27)

These equations have been derived for the first time to give an exact formulation of
the mixed boundary-value problems. It is pertinent to quote the corresponding equations
if we have assumed that the base of the stratum is fixed to the foundation. We find, following
the same procedure as above, that the governing dual integral equations are

Qo fileplopr)dp |
G )y @ - —dpta g - e O <R

y @7)
f a(rpJo(pr)dp =0  (r > R)
0
where
f,(h) = p?* coth(a; h) — &, ot coth(ey 1)
folh) = p*—oa, coth(e, h) coth(a,h)
(23 +p?)
- p2 _ -
f5(h) = p? coth(a, h) coth(ayh) — oo, Sh(o, ) shiah)
so that

3i_>m’f1.2,3(h} = p*—o,0,.

We notice that both equations (27) and (27i) can be shown to reduce exactly to the
semi-infinite medium governing equations as the depth A tends to infinity. The case of
fixed base is obviously more difficult than the frictionless base and is outside the scope
of the present work. We continue in the rest of this paper the frictionless case which is the
one discussed by Warburton [1] and Arnold er al. [2].

We only need to quote the governing dual integral equations for the rectangular body
corresponding to those of equations (27)

Q> oy —

<Gl F0 h)a(x) sin(px)dp = xiy (0 < x < b)
4] ¥

. (27a)
f o(x)sin(px)dp =0 (x > b)

0

where { is the harmonically varying angle of rock.



Vertical vibration of a rigid circular body and harmonic rocking of a rigid rectangular body 765

5. APPROXIMATE GOVERNING DUAL INTEGRAL EQUATIONS AND
THE ESTABLISHMENT OF EQUIVALENT SEMI-INFINITE MEDIUM

No exact solution of the pair of equations (27) is, at present, possible. Although a
very tedious point-by-point calculation is possible using a scheme of successive approxima-
tions similar to those employed in [11] and involving determination of the poles of the
modified Rayleigh function for various values of stratum depth, the procedure will not
give an easy interpretation of the general behaviour of the system for all the parameters.
The experience of the author in [3] has shown that a useful method of studying the behaviour
of the stratum problem is to seek an approximation to the integrand in the first of the
dual integral equations. It is very important here to note that, as long as the range of
vibrations is limited to low frequency factors, i.e. 7, < 1, our approximation will be accept-
able if it is close to the exact integrand for large values of the integrating parameter
(n > 1) and exactly equal to it as # tends to infinity. The argument here is that for low
frequency factor vibrations the main contributions to the exact integral come from values
ofn > n,.

The non-dimensional form of equation (27) is given by

(" o, F(n)J o(nF) dy _
G J, =i cth(a, F)—4n7a,a, cth(eh)

wy, O<F<l)
(28)

f CFaomdn =0 > 1)
o]

in which we have introduced the parameters:

=
i

~
It

=)=

n=pR, N = QR, Ny = QZR’

=~

and
F(n) = pa(r).

We now observe that the double-valued function a, = /(#*—n3) has been modified
in the same manner as in the case of the work in [3] to the form

a, coth(xyh) = {\/(n* —n3)}/{tanh[/(n* —nf)A]}
which we have found approximates throughout the range # > 5, to the form
% COth(dzﬁ) = \/('Iz —13.)
where

N2e = (13— 1/%* (29)

defines an equivalent frequency factor.

We also observe that the double-valued functions o, = \/(n*—#3) is not directly
modified. However, its effect in coth(a,h) is to increase the denominator in the range
n > n, and, thereby, reduce the integrand. This “misplaced” occurrence of coth(e,h)
and the appearance of the other two 3 will be accommodated in the approximate integrand
by changing every #, to ,, and 5, to 5,, where #,, has been defined in equation (29) but
1. is yet undefined.
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We now impose a necessary condition on the approximate integrand in order to
make it follow closely the exact integrand at least for low frequency factor vibration, i.e.
the two integrands must be equal for large values of the integrating parameter, n > 1,.
We find below that this condition necessarily defines #,,.

From the foregoing, we postulate an equivalent semi-infinite elastic medium vibrating
at shear and dilatational frequency factors #,, and #,,, respectively. The governing dual
integral equations comparable with those of equations (28) are, therefore

3. [ Vi —ni)F ) o(nF) dn
G Jo @ —nd) = —ni > —n3)

f Fop o dn =0 (> 1)
4]

=w, O<?<])
(30)

As mentioned above, in order to ascertain that the first of equations (30) is a fair
approximation to its counterpart in equations (28) at least for fow frequency factor vibra-
tions, both integrands must be equal as the integrating parameter # tends to infinity. It
is easy to check from asymptotic expansions that for large values of 5

1

n3a, {(2n* — n2)*coth{o, ) — 4n’a, o, coth(o, )} ™t ~ — = (28i)
2 1-3—)
q( n;
and
- 1 .
N3/ (1 =i H @207 =03 Y =4 > =m0 —n3 )} ! = —————— . (30
&
’?2e

Hence, we immediately conclude that equations (30) are approximately equal to equations
(28) if, and only if

Tie _ s G
Nae na

which now defines #,,.
It is important here to note the remarkable consequence of equation (31) because

2 2
n_ ¢
27 2
Nz G
is a single-valued function of Poisson’s ratio v in accordance with the relation

2 1-2v

Thus the direct consequence of equation (31) is that the frequency factors or the wave
velocities have been reduced in the same proportion thus implying no change of Poisson’s
ratio. We, therefore, conclude that a semi-infinite elastic medium vibrating at a lower
frequency factor 77,, and of the same elastic constants is approximately equivalent to the
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above stratum vibrating at the frequency factor n,. The approximation is valid for all
values of 7, > 1/k and improves with increasing A.

We finally conclude our justification of the fairness of the approximate dual integral
equations by comparing in Table 1 the above expressions on the left-hand sides of equa-
tions (28i) and (30i) even for as large a value as #, = 1 for strata of depths i = 2, 3, 5 and
the whole range of Poisson’s ratio by choosing v = 0,  and 4. The closeness of the two
expressions even at values of the integrating parameter as low as # = 3 and 2 shows how
accurate the approximate integrand is for larger values of n. We should note, however,
that the only limitation to the approximation is that #,, > O or #, > 1/A.

Therefore, we have established an approximate equivalent semi-infinite medium of
the same Poisson’s ratio and shear modulus as the stratum but only vibrating at a reduced
frequency factor n,,.

TABLE |
Exact Approximate

7 i v expression expression
0 036 036
5 1 027 027
¥ 0-18 018
0 0-36 036
3 3 4 027 027
i 0-18 017
0 0-36 0:36
2 i 0-27 0-26
i 0-18 017
0 0-62 0-62
5 1 0-44 0-44
3 0-29 028
0 062 061
2 3 1 0-44 0-43
5 0-29 0-28
0 0-62 059
2 1 0-44 0-42
3 0-29 0.28

6. AMPLITUDE RESPONSE

We now consider the motion of the rigid body under the action of a sinusoidal force

F = F&™™ jts inertia and the stress distribution integrated over the circular base. It is

easy to show that the amplitude response, W, of the body is governed by an equation of
the form

GRW, f (15,) ~m@Py = F (33)

where f(n,,) represents the integration of the dynamic stress distribution which consists
of a real part representing the “spring”” stiffness and a quadrature component representing
the dispersion of waves and producing damping in the medium.

If we introduce the relations

R2Q?p
G s

m = nipR>
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in which p is the stratum density, we find that

N GRwW, 1
Wo = F k=4 ’?2
f(”lzg)_ (’ﬁ_}) ”%e
nle
1
R (34)
fl)—mn3,
where
2
i, = m(ﬂ;) (35)
’72e

is an equivalent mass ratio greater than the actual mass ratio #i but vibrating at a lower
frequency factor 77,, on the equivalent semi-finite medium. Thus, the amplitude W, of
mass #i vibrating at #, on the stratum is the same as that of the equivalent mass #, vibrating
at ,, on the semi-infinite medium. Therefore, for any stratum system, we only need to
find the equivalent quantities m,, 1,, and read off the amplitude W, from the equivalent
semi-infinite medium.

It is now left to give the response curves for determining the modulus [W,,| of the ampli-
tude on the equivalent semi-infinite medium. The theory for this has been given in a previous
work [11] where only a few resonance curves for only zero Poisson’s ratio were worked
out. The need arises here to cover the whole range of Poisson’s ratio and the curves for
Poisson’s ratios of 0, £, 4 and } are given in Fig. 1 for a wide range of mass ratios which
should cover most practical cases. Amplitudes in intermediate range of Poisson’s ratio
can be found by cross-plotting or interpolating. These curves have been generated from
the equations

L1
ol = JEEe)

where Table 2 gives algebraic expressions for the real part P, and the quadrature com-
ponent O, for each of the four values of Poisson’s ratio. These results are being given for
the first time but they have been checked in part by agreement with the experimental
results of Arnold et al. [2].

The response for the rigid rectangular body follows similar analysis except for replacing
the mass ratio #ii by the polar inertia ratio J about the axis of rock to obtain expression
for the non-dimensional angle of rock . The equivalent inertia J, is greater than J similarly
as in equation (35). The complete resonance curves for the rocking rectangular body
corresponding to those in Fig. 1 on the equivalent semi-infinite medium have been given
in a previous work [10] as earlier mentioned.

(36)

7. DISCUSSION OF RESULTS AND COMPARISON WITH EXPERIMENTS

The results in the last section have been used to consider answers to the two funda-
mental questions posed in the introduction. We have generated resonance curves in
Figs. 2 and 3 for the two extreme cases of Poisson’s ratio v = 0 and +. The figures clearly
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Equivolent frequency factor Mae

FiG. 1. Resonance curves for vertical vibration of rigid circular body on the equivalent semi-infinite media
for Poisson’s ratio v = 0, 1, 4 and }.

TABLE 2

4—n (i, + 0649 —0-122¢2,)
3.4617,,(1 + 0:050672,)

55— r]%e(rﬁe +0-763—0-236132,)
4387,.(1+005073,)

6 —n3, (i, +0-793 — 0-20673,)
474n,,(1 +0-04743,)

8 —n3 (i, +1-667—0-288%3,)
6781,.(1+0-01673,)
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F16. 2. Resontance curves for vertical vibration of rigid circular body on strata of increasing depths
for Poisson’s ratio v = 0 and mass ratios #t = 3-8, 76 and {141 - present theory; O A {J,
experimental results of Arnold et al 2], h = 0.

show the effect of mass ratio, Poisson’s ratio and stratum depth on the resonance curves.
The expected decrease in amplitudes with decreasing mass ratio or increasing Poisson’s
ratio for a given strafum depth is observed; so also is the asymptotic approach of the
strata curves to the semi-infinite media as the depths increase.

We observe that resonant frequency decreases slightly, whereas amplitude decreases
appreciably with increasing stratum depth. This agrees with the expected result because
increasing depth provides greater damping due to dispersion of waves and consequently
peak amplitude occurs before the undamped resonant frequency is attained. However,
beyond a certain stratum depth the amount of dispersion becomes negligible and the
curves show that for practical purposes a stratum depth of five times the radius of the
circular base is sufficient to provide damping that would make the stratum a fair approxi-
mation to a semi-infinite medium,

Although the above discussion arises from consideration of the extreme cases of
Poisson’s ratio similar results are true for the whole range since the approximate integrand
is generally applicable provided , > 1/h which is the only restraint on the validity of our
approximations. It is also useful to note that if the dotted curve in Fig. 5 of Warburton
{17 has been superposed on Fig. 6 of his paper it will be seen that all the experimental
points for resonant frequency factors of bodies with different mass ratios and on strata
of increasing depths as shown in Fig. 6-—obtained from Arnold et al. [2]—consistently
lie to the right of the dotted curve representing the semi-infinite medium limit. Thus these
experiments confirm the asymptotic approach of the strata to the semi-infinite medium
and, therefore, show that the crossing of strata curves by semi-infinite medium curve in
Figs. 5 and 7 of Warburton has no experimental justification.

The results of the present theory have been compared with the experiments of Arnold
et al. {2] as shown in Fig. 2 and also in Table 3 below. The mass ratios s and depth ratios
I used in Fig. 2 are such that it is necessary to separate the middle mass ratio curves, ie.
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F1G. 3. Resonance curves for vertical vibration of rigid circular body on strata of increasing depths for
Poisson’s ratio v = 1 and mass ratios /i = 10, 20 and 30.

# = 7.6 in order to make the curves clearer. The experimental points are those of the
semi-infinite medium as shown in Fig. 4(a) of Arnold et al. [2). The asymptotic approach
of the strata curves to the semi-infinite medium is thus experimentally confirmed.

We also compare in Table 3 below the resonant frequency factors of these masses on
strata of the same depth ratios 4 as those in the experimental points in Fig. 6 of Warburton
[1] with the frequency factors at peak amplitudes in Fig. 2 of the present work. The good
agreement justifies the fairness of the approximation to the governing dual integral
equations.
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TABLE 3

Resonant frequency factor

E B
Experiment Present theory
Arnold et al.
14 10 091
38 21 0-88 0-89
28 075 075
o 072 872
21 073 073
76 2-8 067 067
o 062 0-62
114 2.8 0-56 0-56
0 3-54 0-54

Finally, it is useful to discuss qualitatively how, in practical terms, our equivalent
semi-infinite medium produces the same amplitude response as the stratum, This can be
found by first considering frequency factors below resonance where the amplitude increases
with increasing frequency factor. Thus an increased inertia will provide the effect of in-
creasing amplitude if our semi-infinite medium is vibrating at the same frequency factor
11, as the stratum. Therefore, the reduced frequency factor #,, at which the semi-infinite
medijum is vibrating produces the compensating effect of reducing the amplitude to that
on the stratum. Similarly, this compensating effect is produced beyond resonance as can
be seen from Fig. 1 which shows a reversal of the above behaviour of resonance curves:
increased inertia now reduces amplitude at a given frequency factor whereas reduced
frequency factor 7, of the semi-infinite medium has the compensating effect of increasing
amplitude on this side of the resonance curve. Thus, in practical terms, it is this com-
pensating effect between increased inertia on the one hand and reduced frequency factor
on the other that makes our semi-infinite medium a reasonable equivalent of the stratum
system,

The above discussion applies also to the rocking of the rigid rectangular body as
shown in Figs. 4 and 5. We find also from all the above comments that for large inertia
ratio bodies, greater than about 10, the response of the body can be estimated from the
semi-infinite medium solution irrespective of the stratum depth.

8. CONCLUSIONS

The mixed boundary-value problems of the vertical vibration of a rigid circular body
and of the rocking of a long rigid rectangular body on an infinitely wide elastic stratum
have been precisely formulated in terms of dual integral equations. It is found that, for the
case of a frictionless contact base with foundation, the rigid body on a stratum can be
reduced approximately to a body with increased inertia vibrating at a lower frequency
factor on a semi-infinite medium of the same elastic constants. The governing dual integral
equations for the case of a fixed base are given but not solved.

The work finally answers the two questions asked in the introduction by showing
that resonant frequency factor reduces with increasing stratum depth and that a stratum
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FIG. 4. Effect of inertia ratio J and depth & on resonance curves for rocking of rigid rectangular body
on a stratum of Poisson’s ratio v = 0.
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F1G. 5. Effect of Poisson’s ratio and stratum depth % on resonance curves for rocking of rigid rectangular
body of inertia ratio J = 3.
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with a depth of about five times the circular radius is a very fair approximation to a semi-
infinite medium. The results agree with the experimental results of Arnold et al. [2] and
provide a faster prediction of a stratum behaviour by comparison with the semi-infinite
medium in which comprehensive resonance curves have been provided over the whole
range of Poisson’s ratio. The work finally discusses the practical interpretation and
justification for the equivalence of the semi-infinite medium system and the given stratum
system.,
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Abcrpaxr—[IpeanaraoTcs TOYHbIe GOPMYJIbI, B BUE TMApPHBIX HHTETPANbHBIX YDABHEHHH, KACAIOLIMECH
CMeUIaHbIX 3334 Ha KpaeBble YCAOBMA, LI BEPTHKANBHOTO KOJEBAHHR KECTKOro, KpYyrioro Tena u
KaYaHus JQJMHHOTO, XECTKOro, NPSIMOYTObHOIO Tena, Ha DeckoHeMHO IMPOKOM ynpyrom cioe. Jns
cay4as ocHosaHnA dynaamenTa, Oe3 yyeéra TpeHus, ronydaroTea NpubIIMKeHne pelueHns, NYyTeM yupex-
[IEHUS, HOBBIM CIOCOBOM, IKBUBAIEHTHOM cucTeMbl Ha nonybeckonewHoll ynpyroit cpeae, OkaspiBaercs,
YTO [OBEAEHHE TEAR, KOAEOAOWErocs IpH GakToPe YaCTOThI y HA CIIOE KOHEYHOM TOJILMHL! TprOH3NTe-
JIGHO IKBHBATIEHTHOE TMOBEAEHUIO TAKOTO-XE TENA, KOTOPOro WUHepuust_yBenuyeHa dakropom n?/12.°, HO
oHo konebrerca npu Gonee HuIKUM GAKTOpe HACTOTHI M2, = (7 — A/A% 2 na noayBeckoHeuHol cpeae,
obmamaroulell HTHMYU XKE CaMbIMHK YIIPYTUMH TOCTOSHHBIMH, KaK ¢10d OelpaimepHoli tomuuns 7. Bee
pe3yiabTaTel NpubimmKenys COOTBETCTBYIOT pelyibTaTaMm Aans nonyOCckoMeuno# cpeabl, Ceny ToOLIMHA
CJIOA CTPeMUTICH K OecKOHEYHOCTH. JTOT hakT, 3areM, UCAPABASET MOrpeuiHocTb Yapbaptouna {i], B
KOTOPOI MOBEJEHHE TeNa HA NONyOecKOHEUHON cpene HAXOAUTCA MEXY NOBEAECHUAMM HA CIIO€ KOHEYHOM
TOJIMHBLI, B MPOTUIOJOXHOCTE OXHAAEMOMY ACCHMITTOTHYECKOMY npubinxeHuto, npobepeHuomy
3KcnepuMenTamMu Apeonaa, beitkpoda u Yapbaprona [2].

B 3axmioqeHHe, YCTAHOB/IMBAIOTCH [BA BaXKHbLIC DPEIYAbTATHI Jist Takol CHCTEMbBI! TOALMHA CHOS
OpUOAUIUTENLHO MATH pa3 Gonblie PANYYCA OCHOUAHUR/MAN TIONROBUHDBI TOJNILUHBL iR TIPAMOYTONBHOTO
TENA/ABNNKETCH OYEHL XOpownM npubmkennem ans nonybeckoHeuHoH CPeAbl; HacTOTa Pe30HaHCca Tena Ha
CJI0€ YMEHBLIUAETCH NIPH POCTE TOMLLMHBE 3TOTO Xe cnos. Janee, GaxkTop 4acTOTh PE3OHAKCA, 12, Ans Ten
¢ COJbIIAMH OTHOWEHHAMH WHEPLMA/OO0MbIIE HYeM OKONO IEeCHTH/, MOXHO OMNpPEeaeauTbh U3 pelleHus
NoJIyBeCKOHEYHON Cpeibl, HE3ABUCUMO OT TONLLUMHbI Clod. [Tpeanaraemas Teopus yKa3biBaeT Haajexallyio
HOCTOSHHYK CXOIHMOCTB ¢ 3KCIIEPUMEHTAILHBIMA pe3ynbTaTamu ApHonaa n op. [2].



